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A Simple Design Approach for the Fuzzy Control 
of Nonlinear Dynamic System via Lyapunov 

Stability Theorem 
Mohd. Aqib, Mohammad Fazle Azeem 

 

Abstract— This paper presents the control design and the stability analysis of the continuous time fuzzy control system. The nonlinear 
dynamic system can exactly be represented by T-S fuzzy model which consists of number of linear subsystem. Based on the lyapunov 
stability theorem, the stability conditions are obtained in the term of LMI and the feedback gain matrices of the each linear state feedback 
controller is obtained by the method of pole placement. 

Index Terms— Takagi-Sugeno (T-S) fuzzy model, Linear Matrix Inequality (LMI), Fuzzy State Feedback Controller 

——————————      —————————— 

1 INTRODUCTION                                                                     

uzzy system are developed and applied in various fields 
of application. Fuzzy logic control has been applied suc-

cessfully to an automatic train operation, an automatic con-
tainer crane operation, elevator control, nuclear reactor con-
trol, and motor control. In general, fuzzy control system can 
be classified as Mamdani type and Takagi-Sugeno (T-S) type. 
The Mamdani type fuzzy control system is well recognized 
and received by the society. The T-S type fuzzy system mainly 
focuses on the modeling aspect. 

There are some works in literature that are mainly 
concerned with the stability analysis of T-S fuzzy model. The 
existence of a proper T-S fuzzy model is first assumed. Tanaka 
and Sugeno [1] [2] [3] showed that finding a common symmet-
ric positive definite matrix 𝑃 could show the stability of a T-S 
fuzzy model. 

One of the most important concepts concerning the 
properties of control systems is stability. Stability analysis of 
fuzzy control systems has been difficult because fuzzy systems 
are essentially nonlinear systems. There are several approach-
es to control of a nonlinear system. A typical approach is the 
feedback stabilization of nonlinear system where a linear 
feedback control is designed for the linearization of nonlinear 
systems where about a nominal operating point. This ap-
proach, however, generally only renders a local result. Other 
approaches such as feedback linearization are rather involved 
and tend to result in rather complicated controllers. 
 

 

 
 

In this paper, we consider a non-local approach [4], 
which is conceptually simple and straightforward. Linear 
feedback control techniques can be utilized as in the case of 
feedback stabilization. The procedure is as follows: First the 
nonlinear plant is represented by a Takagi-Sugeno type fuzzy 
model. In this type of fuzzy model, local dynamic state space 
regions are represented by linear models.  

The control design is carried out base on the fuzzy 
model which uses the same membership function of given 
fuzzy model. The idea is that for each linear model, a linear 
feedback control designed is carried out base on the fuzzy 
model. 

This paper is organized as follows. In section 2, T-S 
fuzzy model and fuzzy state feedback controller are intro-
duced. In section 3, stability condition for the closed loop 
fuzzy control system is presented. In section 4, a numerical 
example is presented to illustrate the proposed methodology. 
In section 5, a conclusion will be drawn. 

2 PROBLEM FORMULATION 
Consider the nonlinear dynamic system �̇�(𝑡) =  𝑓(𝑥(𝑡),𝑢(𝑡), 𝑡). 
This nonlinear dynamic system can be exactly represented by 
T-S fuzzy model proposed by Takagi and Sugeno fuzzy model 
[3] with model rule. 

2.1 T-S fuzzy model  
This method is simple and natural. The system dynamics is 
captured by a set of fuzzy implications, which characterize 
local relations in the state space. The main feature of a Takagi-
Sugeno fuzzy model [4] [5] is to express the local dynamics of 
each fuzzy implication (rule) by a linear system model. The 
fuzzy model suggested by Takagi & Sugeno is of the following 
form: 
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2.2 Continuous Time Fuzzy System  
Model rule 𝒊  

IF 𝑧1(𝑡)𝑖𝑖 𝑀𝑖1 𝑎𝑎𝑎 … … … … … … … . 𝑧𝑝(𝑡)𝑖𝑖 𝑀𝑖𝑝;  

𝑓𝑓𝑓 𝑖 = 1,2,3 … … . 𝑓   

THEN 

�̇�(𝑡)=𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) 

where 𝑴𝒊𝒋 is the fuzzy set;   𝑗 = 1,2,3 … … … . 𝑓 ; 

𝑥(𝑡)𝜖𝑅𝑛 P

 is the state vector; 

𝑢(𝑡) 𝑅𝑚 is the control input;  

𝑧1(𝑡), 𝑧2(𝑡) … … … … … … … . 𝑧𝑝(𝑡) are the premise variable and r 
is the no. of fuzzy IF-THEN rules. 

By fuzzy blending, the overall fuzzy model is inferred as: 

�̇�(𝑡) = ∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�(𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡))                                     (1)            

Where  𝜇𝑖 = 𝑤𝑖(𝑧(𝑡))
∑ 𝑤𝑟
𝑖=1 𝑖(𝑧(𝑡))

 ;    

𝑤𝑖�𝑧(𝑡)� = ∏ 𝑀𝑖𝑗 �𝑧𝑗(𝑡)�𝑝
𝑗=1 ;  

𝑤𝑖�𝑧(𝑡)� 𝑖𝑖 𝑡ℎ𝑒 𝑎𝑒𝑑𝑓𝑒𝑒 𝑓𝑓 𝑚𝑒𝑚𝑚𝑒𝑓𝑖ℎ𝑖𝑖 𝑓𝑓 𝑧𝑗(𝑡)𝑖𝑎 𝑀𝑖𝑗  

Here 𝑤𝑖�𝑧(𝑡)� ≥ 0, 𝑓𝑓𝑓 𝑖 = 1,2,3 … … … … … … … … . . . 𝑓   

and ∑ 𝑤𝑖�𝑧(𝑡)�𝑟
𝑖=1 > 0 for all 𝑡.  

Therefore, 𝜇𝑖�𝑧(𝑡)� ≥ 0 for 𝑖 = 1,2,3 … … . 𝑓 and  

 ∑ 𝜇𝑖�𝑧(𝑡)�𝑟
𝑖=1 = 1.  

2.3 Fuzzy state feedback controller  
Control Rule i 

IF 𝑧1(𝑡)𝑖𝑖 𝑀𝑖1 𝑎𝑎𝑎 … … … … … … … . 𝑧𝑝(𝑡)𝑖𝑖 𝑀𝑖𝑝; 

𝑓𝑓𝑓 𝑖 = 1,2,3 … … . 𝑓   

THEN 

𝒖(𝑡) = −𝑭𝒊𝒙(𝑡)                                                                                                                         

where 𝑴𝒊𝒋 is the fuzzy set;   𝑗 = 1,2,3 … … … . 𝑓 ; 𝑥(𝑡)𝜖𝑅𝑛 P

 is the 
state vector; 

The fuzzy control rules have a linear controller (state feedback 
laws in this case) in the consequent parts.  

The output of Fuzzy controller is given by: 

𝒖(𝑡) = −∑ 𝜇𝑖𝑟
𝑖=1 (𝑧(𝑡))𝑭𝒊𝒙(𝑡)                                                     (2)  

Put the value of (1) into (2), we obtain (3) as given below 
�̇�(𝑡)=∑ 𝜇𝑖𝑟

𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟
𝑗=1 �𝑧(𝑡)�(𝐴𝑖 − 𝐵𝑖𝐹𝑗)𝒙(𝒕)                   (3) 

Let 𝐻𝑖𝑖 = (𝐴𝑖 − 𝐵𝑖𝐹𝑖)    
The control design problem is to find local feedback 

gains 𝑭𝒊 such that conditions (4) and (5) in Theorem 1 are satis-
fied. Using the notation of quadratic stability, we can also 
think of the control design problem as finding 𝐹𝑖 , 𝑖 such that 
the closed-loop system (3) is quadratically stable. 

3 STABILITY ANALYSIS OF FUZZY CONTROL SYSTEM IN 
THE SENSE OF LYAPUNOV STABILITY THEOREM 

A sufficient condition, derived by Tanaka and Sugeno [6] 
which guarantees the stability of a fuzzy system, is obtained in 
term of Lyapunov’s direct method. 

Theorem 1: The equilibrium of a fuzzy control system (3) is asymp-
totically stable in the large if there exists a common positive definite 
matrix P such that the following two conditions are satisfied. 

{𝑨𝒊 − 𝑩𝒊𝑭𝒊}𝑻𝑷+𝑷{𝑨𝒊 − 𝑩𝒊𝑭𝒊} < 0,   𝑖 = 1,2, … … . . 𝑓             (4) 
𝑯𝒊𝒋

𝑻𝑷 +𝑷𝑯𝒊𝒋 < 0, 𝑖 < 𝑗 ≤ 𝒓     𝑖. 𝑡    𝜇𝑖 ∩ 𝜇𝑗 ≠ ∅                     (5) 

where  𝑯𝒊𝒋 =
�𝑨𝒊−𝑩𝒊𝑭𝒋�+{𝑨𝒋−𝑩𝒋𝑭𝒊}

2
   

The condition (4) & (5) are in the form of LMI, which can be 
solved by the LMI tool box in matlab [7]. 
Proof: From the equation (3) we have 
�̇�(𝑡)=∑ 𝜇𝑖𝑟

𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟
𝑗=1 �𝑧(𝑡)�(𝐴𝑖 − 𝐵𝑖𝐹𝑗)𝒙(𝒕)                    

Let 𝐻𝑖𝑖 = (𝐴𝑖 − 𝐵𝑖𝐹𝑖)    
Above can also be written as: 
�̇�(𝑡)=∑ 𝜇𝑖𝑟

𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟
𝑗=1 �𝑧(𝑡)�𝐻𝑖𝑖𝒙(𝒕) +

2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� �

𝐻𝑖𝑗+𝐻𝑗𝑖
2

� 𝒙(𝒕)                              (6) 
Now consider the quadratic Lyapunov function: 
𝑉�𝒙(𝒕)� = 𝒙(𝒕)𝑻𝑃𝒙(𝒕)                                                                  (7)                                   
𝑃 = 𝑃𝑇 ∈ 𝑅𝑛𝑥𝑛 is symmetric positive definite matrix  
The close loop fuzzy control system (3) is to be asymptotically 
stable  
If   �̇��𝒙(𝒕)� < 0      ∀ 𝑥(𝑡) ≠ 0 
Now take the time derivative of equation (7) both side, we get 
�̇��𝒙(𝒕)� = �̇�(𝒕)𝑻𝑃𝒙(𝒕) + 𝒙(𝒕)𝑻𝑃�̇�(𝒕)                                         (8) 
From (6) & (8) we get 
�̇��𝒙(𝒕)� = �∑ 𝜇𝑖𝑟

𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟
𝑗=1 �𝑧(𝑡)�𝐻𝑖𝑖𝒙(𝒕) +

2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� �

𝐻𝑖𝑗+𝐻𝑗𝑖
2

� 𝒙(𝒕) � 𝑇𝑃𝒙(𝒕) +

𝒙(𝒕)𝑻𝑃 �∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟

𝑗=1 �𝑧(𝑡)�𝐻𝑖𝑖𝒙(𝒕) +

2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� �

𝐻𝑖𝑗+𝐻𝑗𝑖
2

� 𝒙(𝒕)� 𝒙(𝒕)}]                   
�̇��𝒙(𝒕)� =
��∑ 𝜇𝑖𝑟

𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟
𝑗=1 �𝑧(𝑡)�𝐻𝑖𝑖 +

2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� �

𝐻𝑖𝑗+𝐻𝑗𝑖
2

�� 𝒙(𝒕) � 𝑇𝑃𝒙(𝒕) +

𝒙(𝒕)𝑻𝑃 ��∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟

𝑗=1 �𝑧(𝑡)�𝐻𝑖𝑖 +

2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� �

𝐻𝑖𝑗+𝐻𝑗𝑖
2

�� 𝒙(𝒕)�              

�̇��𝒙(𝒕)� = 𝒙(𝒕)𝑻 ��∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟

𝑗=1 �𝑧(𝑡)�𝐻𝑖𝑖𝑃 +

2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� �

𝐻𝑖𝑗+𝐻𝑗𝑖
2

��𝑃 � 𝑇𝒙(𝒕) +

𝒙(𝒕)𝑻 ��∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟

𝑗=1 �𝑧(𝑡)�𝐻𝑖𝑖𝑃 +

2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� �

𝐻𝑖𝑗+𝐻𝑗𝑖
2

�𝑃�𝒙(𝒕)�  

�̇��𝒙(𝒕)� = 𝒙(𝒕)𝑻 �∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟

𝑗=1 �𝑧(𝑡)�𝐻𝑖𝑖𝑇𝑃𝑇 +

2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� �

𝐻𝑖𝑗+𝐻𝑗𝑖
2

�
𝑇
𝑃𝑇�𝒙(𝒕) +

𝒙(𝒕)𝑻 ��∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟

𝑗=1 �𝑧(𝑡)�𝐻𝑖𝑖𝑃 +
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2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� �

𝐻𝑖𝑗+𝐻𝑗𝑖
2

�𝑃�𝒙(𝒕)�  

�̇��𝒙(𝒕)� = 𝒙(𝒕)𝑻 �∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑟

𝑗=1 �𝑧(𝑡)��𝐻𝑖𝑖
𝑇𝑃 +

𝐻𝑖𝑖𝑃�+ 2∑ 𝜇𝑖𝑟
𝑖=1 �𝑧(𝑡)�∑ 𝜇𝑗𝑖<𝑗 �𝑧(𝑡)� ��

𝐻𝑖𝑗+𝐻𝑗𝑖
2

�
𝑇
𝑃𝑇 +

�𝐻𝑖𝑗+𝐻𝑗𝑖
2

�𝑃��𝒙(𝒕)  

Now for the close loop fuzzy control system (3) is to be as-
ymptotically stable if  �̇��𝒙(𝒕)� < 0 then we have 

𝑯𝒊𝒊
𝑻𝑷+𝑷𝑯𝒊𝒊 < 0  &  �

𝑯𝒊𝒋+𝑯𝒋𝒊
𝟐

�
𝑻
𝑷 +𝑷 �

𝑯𝒊𝒋+𝑯𝒋𝒊
𝟐

� < 0. 
Hence, {𝑨𝒊 − 𝑩𝒊𝑭𝒊}𝑻𝑷+𝑷{𝑨𝒊 − 𝑩𝒊𝑭𝒊} < 0 and 
𝑯𝒊𝒋

𝑻𝑷 +𝑷𝑯𝒊𝒋 < 0  

4 NUMERICAL EXAMPLE 
Example 1 consider the problem of balancing and swing-up 
of an inverted pendulum on a cart. Recall the equation of mo-
tion for the pendulum [4]: 

�̇�1(𝑡) = 𝑥2(𝑡)                                                                              (9) 

�̇�2(𝑡) =
𝑔𝑠𝑖𝑛�𝑥1(𝑡)�−𝑎𝑚𝑙𝑥2

2(𝑡)sin�2𝑥1(𝑡)�
2 −acos�𝑥1(𝑡)�𝑢(𝑡)

4𝑙
3 −𝑎𝑚𝑙𝑐𝑜𝑠

2(𝑥1(𝑡))
                    (10)                  

where 𝑥1(𝑡) denotes the angle of the pendulum from the verti-
cal (in radian) and 𝑥2(𝑡)is the angular velocity; g = 9:8 m/s2 is 
the gravity constant, 𝑚 is the mass of the pendulum, M is the 
mass of the cart, 2𝑙 is the length of the pendulum, and 𝑢 is the 
force applied to the cart (in newtons); 𝑎 =  1/(𝑚 + 𝑀). 

Let 𝒎 = 𝟐.𝟎 𝐤𝐤,𝑴 = 𝟖.𝟎 𝐤𝐤,𝟐𝟐 = 𝟏.𝟎 𝐦𝐦𝐦𝐦𝐦 in the simulation  

4.1 Two-Rule modeling and control 

The control objective of this subsection is to balance the in-
verted pendulum for the approximate range 𝑥1𝜖(−900, 900). In 
order to use the PDC approach, we must have a fuzzy model 
which represents the dynamics of the nonlinear plant. There-
fore we first represent the system (9) & (10) by a Takagi-
Sugeno fuzzy model. To minimize the design effort and com-
plexity, we try to use two-rule fuzzy model. 

Model rule 1:  IF 𝑥1(𝑡) is about 0.    

                          THEN �̇�(𝒕) = 𝐴1𝒙(𝒕) + 𝐵1𝒖(𝒕) 

Control Rule 1: IF 𝑥1(𝑡) is about0. THEN 𝒖(𝑡) = −𝑭𝟏𝒙(𝑡)  
Model rule 2:  IF𝑥1(𝑡) is about ± 𝛱

2
  

                          THEN �̇�(𝒕) = 𝐴2𝒙(𝒕) + 𝐵2𝒖(𝒕)  

Control Rule 2: IF 𝑥1(𝑡) is about± 𝛱
2
. THEN 𝒖(𝑡) = −𝑭𝟐𝒙(𝑡)  

where 𝒙(𝒕) = [𝑥1(𝑡)    𝑥2(𝑡)]𝑇                        

𝐴1 = �
0 1
𝑔

4𝑙
3 −𝑎𝑚𝑙

0�;           𝐵1 = �
0

− 𝑎
4𝑙
3 −𝑎𝑚𝑙

� 

𝐴2 = �
0 1
2𝑔

Π(4𝑙3 −𝑎𝑚𝑙𝛽
2)

0�;    𝐵2 = �
0

− 𝑎𝛽
4𝑙
3 −𝑎𝑚𝑙𝛽

2
�; 𝛽 = cos (880) 

The output of Fuzzy Controller is given by: 

𝒖(𝑡) = −∑ 𝜇𝑖2
𝑖=1 (𝑧(𝑡))𝐹𝑖𝒙(𝑡)                                                 (11)  

 

 
Fig. 1 Membership functions of two-rule model of example 1 

4.2 Result 
Choose the closed-loop Eigen values as[−2,−2]. 
The state feedback gain matrices are obtained as: 
𝑭𝟏 = [−𝟒𝟐𝟒.𝟖𝟖𝟖𝟎,−𝟖𝟎.𝟎𝟎]  & 𝑭𝟐 = [−𝟑𝟎𝟎.𝟏𝟒𝟐𝟖,−𝟖𝟎.𝟎𝟎] 
Now  𝑨𝟏 − 𝑩𝟏𝑭𝟏 = 𝑨𝟐 − 𝑩𝟐𝑭𝟐 = 𝑯 = � 𝟎 𝟏

−𝟒 −𝟒�  
 
𝑯𝟏𝟐 = {𝑨𝟏−𝑩𝟏𝑭𝟐}+{𝑨𝟐−𝑩𝟐𝑭𝟏}

𝟐
= � 𝟎 𝟏

−𝟒𝟑.𝟐𝟒𝟏𝟖 −𝟏𝟏.𝟖𝟏𝟐�  
 

 
Fig. 2 shows the angle response of the fuzzy control system of example 1 
with initial condition 𝒙𝟏 = 𝟏𝟒𝟎, 𝟐𝟒𝟎,𝟑𝟒𝟎,𝟒𝟒𝟎, 𝟒𝟒𝟎,𝟎𝟒𝟎,𝟖𝟒𝟎, 𝟖𝟒𝟎 𝒂𝒏𝒅 𝒙𝟐 = 𝟎 

The common Matrix 𝑃 is obtained as: 

𝑷 = �𝟎.𝟎𝟖𝟖𝟏 𝟎.𝟎𝟎𝟎𝟖
𝟎.𝟎𝟎𝟎𝟖 𝟎.𝟎𝟎𝟎𝟏�  

and it can show that the stability condition of theorem 1 are 
satisfied: 
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{𝐴𝑖 − 𝐵𝑖𝐹𝑖}𝑇𝑃 + 𝑃{𝐴𝑖 − 𝐵𝑖𝐹𝑖} < 0 ;𝑓𝑓𝑓 𝑖 = 1,2  
𝐻12

𝑇𝑃 + 𝑃𝐻12 < 0  

5 CONCLUSION 
The nonlinear dynamic system has been controlled by the 
fuzzy control system and the condition of stability of the 
closed loop fuzzy control system has been derived. The gain of 
the fuzzy state feedback controller is being obtained by the 
method of pole placement. A numerical example has been 
given to analyze the stability of given fuzzy control system. 
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